Skip Ribbon Commands
Skip to main content
​​​​​​​​​​​​IMPAQ - Scientific Output
Publications

I. WP1

Published:​

1.1. Blanda E, Drillet G, Huang C-C, Hwang J-S, Jakobsen HH, Rayner TA, Su H-M, Wu C-H and Hansen BW, 2015. Trophic interactions andproductivity of copepods as live feed from tropical Taiwanese outdoor aquacultureponds​. Aquaculture 445, 11-21.

1.2. Drillet G, Chan N., Drillet Z, Foulsham AJ, Ducheyne A, Eikaas HS, Schmoker C, Hansen BW and Lybæk R, 2014. Opinions on the sustainabledevelopment of aquaculture. J Fisheries Livest Prod 2:118. doi: 10.4172/2332-2608.1000118.

1.3. Jepsen PM, Andersen CVB, Schjelde J and Hansen BW, 2015. Tolerance of un-ionized ammonia in live feed cultures of the calanoid copepod Acartia tonsa Dana. Aquaculture Research 46, 420-431.

1.4. Nilsson B, Jepsen PM, Rewitz K and Hansen BW, 2014. Expression of hsp70 and ferritin in embryos of the copepod Acartia tonsa (Dana) during transition between subitaneous and quiescent state. J. Plankton Res. 36, 513-522.

1.5. Rayner TA, Jørgensen NOG, Blanda E, Wu C-H, Huang C-C, Mortensen J, Hwang J-H and Hansen BW, 2015. Biochemical omposition of the Promising Live Feed Tropical Calanoid Copepod Pseudodiaptomus annandalei (Sewell 1919) Cultured in Taiwanese Outdoor Aquaculture Ponds. Aquaculture 441:25-34.

1.6. Vu MTT, Jepsen PM and Hansen BW, 2014. A comprehensive and precise quantification of the calanoid copepod Acartia tonsa (Dana) for intensive live feed cultures using an automated ZooImage system. Aquaculture. 422–423, 225-231.

In press:

1.6. Blanda E, Hansen BW, Højgaard JK, Jepsen PM, Pedersen MF, Rayner TA, Thoisen CV and Jakobsen HH. Inorganic nitrogen addition in a semi-intensive turbotlarval aquaculture system: effects on phytoplankton and zooplanktoncomposition. Aquaculture Research, 1-21. doi: 10.1111/are.12842 (first published online on 27 August 2015).

1.7. Drillet G, Rais M, Novac A, Jepsen PM, Mahjoub M-S. and Hansen BW. Total egg harvest by the calanoid copepod Acartia tonsa (Dana) in intensive culture - effects of high stocking densities and water quality on daily egg production and egg hatching. Aquaculture Research. 1-12. doi: 10.1111/are.12459 (first published online on 12 April 2014).

1.8. Jakobsen HH, Jepsen PM Blanda E, Jørgensen NOG, Novac A, Engell-Sørensen K and Hansen BW. Plankton composition and biomass development: A seasonal study of asemi-intensive outdoor system for rearing of turbot. Aquaculture Nutrition. doi: 10111/anu.12328 (first published online on 24 August 2015).

1.9. Vu MTT, Douëtte C, Rayner TA, Thoisen C, Nielsen, SL and Hansen BW. Optimization of photosynthesis, growth, and biochemical composition of the microalgae Rhodomonas salina – an established diet for live feed copepods in aquaculture. Journal of Applied Phycology, doi:10.​1007/​s10811-015-0722-2 (Online first 05 October 2015).​

Submitted:

1.10. Højgaard J K, Rayner T A, Jensen C K, Overton J L and Hansen BW. The potential for feeding pikeperch (Sander lucioperca L.) larvae with euryhaline copepod nauplii. Submitted to Aquaculture.

1.11. Jepsen PM, Jakobsen HH, Rayner TA, Blanda E, Novac A, Engell-Sørensen K and Hansen BW. A production season of turbot larvae Scophthalmus maximus (Linnaeus, 1758) reared on copepods in a Danish semi-intensive outdoor system. Submitted to Aquaculture International.

1.12. Rayner TA, Højgaard J K, Hansen BW and Hwang J-S. Density effect on the ovigerous rates of the calanoid copepod Pseudodiaptomus annandalei (Sewell 1919). Submitted to Aquaculture on 10 August 2015.​

-------------------------------------------------------------------------

II. WP2

Published:

2. 1. Heuschele, J., and Selander E. 2014. The chemical ecology of copepodsJ. Plankton Res.: 0, 1–19. doi:10.1093/plankt/fbu025​

Accepted:

2.2. Selander E, Heuschele J, Nylund G, Pohnert G, Pavia H, Bjærke O, Pender-Healy L, Tiselius P and Kiørboe T. Solid phase extraction and metabolicprofiling of exudates from living copepods. Accepted for publication in PeerJ on 02 December 2015.

Submitted:

2.3. Heuschele J, Nemming J, Tolstrup L, Kiørboe T, Nylund G and Selander E. The sex specific metabolomics footprint of Oithona davisae. Submitted to Journal of Sea Research, December 2015.

2.4. Selander E, Heuschele J, Nylund G, Pohnert G, Pavia H, Bjærke O, Pender-Healy L,Tiselius P, and Kiørboe T. Sex specific signatures in signaling lipids and other exudates from the copepod Temora longicornis. Submitted to Journal of Chemical Ecology.

-------------------------------------------------------------------------

III. WP3

Published:​

3.1. Gomez F and Skovgaard A, 2015. A parasite of marine rotifers: a new of lineage of dinokaryotic dinoflagellates (Dinophyceae)​. Journal of Marine Biology, 2015: 5.

3.2. Gomez F and Skovgaard A, 2015. The molecular phylogeny of Oodinium Chatton, 1912 (Dinoflagellata: Oodiniaceae), highly divergent parasitic dinoflagellates with non-dinokaryotic characters. Systematic Parasitology. 90: 125–135.

3.3. Gomez F and Skovgaard A, 2015. Molecular phylogeny of the parasiticdinoflagellate Chytriodinium within the Gymnodinium Clade (Gymnodiniales, Dinophyceae). Journal of Eukaryotic Microbiology. 62: 422–425.

3.4. Jakobsen HH, Blanda E, Staehr PA, Højgaard JK, Rayner TA, Pedersen MF and Hansen BW, 2015. Development of phytoplankton communities: Implications ofnutrient injections on phytoplankton composition, pH and ecosystem production. Journal of Experimental Marine Biology and Ecology 473, 81-89.

3.5. Petkeviciute E, Kania PW and Skovgaard A, 2015. Genetic responses of the marine copepod Acartia tonsa (Dana) to heat shock and epibiont infestation. Aquaculture Reports. 2: 10–16.

3.6. Skovgaard A, Karpov SA and Guillou L, 2012. The parasitic dinoflagellates Blastodinium spp. inhabiting the gut of marine, planktonic copepods: morphology, ecology and unrecognized species diversity. Frontiers in Microbiology. 305: 1–19. 

3.7. Skovgaard A, 2014. Dirty Tricks in the Plankton: Diversity and Role ofMarine Parasitic Protists.​ Acta Protozool. 53: 51–62.

3.8. Skovgaard A, Castro-Mejia JL, Hansen LH and Nielsen DS, 2015. Bacteriaassociated with copepods in an extensive rearing system. PLoS ONE 10(7) e0132516. doi:10.1371/ journal.pone.0132516

3.9. Sørensen SR, Tomkiewicz J and Skovgaard A, 2014. Ichthyodinium identified in the eggs of European eel (Anguilla anguilla) spawned in captivity. Aquaculture. 426–427: 197–203.

Submitted:

3.10. Dorosz JNA, Castro-Mejia JL, Hansen LH, Nielsen DS and Skovgaard A. Different microbiomes associated with two copepod species, Acartia tonsa and Temora longicornis, from the same marine environment​ 

-------------------------------------------------------------------------

​III. WP4

Published:

4.1. Pan Y-J, Souissi A, Souissi S and Hwang J-S, 2016. Effects of salinity on the reproductive performance of Apocyclops royi (Copepoda, Cyclopoida). J. Exp. Mar. Biol. Ecol. 475, 108-113.

4.2. Stancheva S, Souissi A, Ibrahim A, Barras A, Spriet C, Souissi S and Boukherroub R, 2015. Lipid nanocapsules as a newdelivery system in copepods: Toxicity studies and optical imaging. Colloids and Surfaces B: Biointerfaces. 135 :441-447.

4.3. Zhang J, Wu C, Pellegrini D, Romano G, Esposito V, Ianora A and Buttino I, 2013. Effects of different monoalgal diets on egg production, hatching success and apoptosis induction in a Mediterranean population of the calanoid copepod Acartia tonsa. Aquaculture, 400/401: 65-72.

4.4. Hammervold SH, Glud RN, Evjemo JO, Hagemann A and Hansen BW, 2015. A new large egg type from the marine live feed calanoid copepod Acartia tonsa (Dana) –Perspectives for selective breeding of designer feed for hatcheries. Aquaculture. 436, 114-120.

In press:

4.5. Pan Y.-J, Souissi A, Hwang J-S and Souissi S, 2015. Artificially cold-induced quiescent egg viability of the tropical copepod Acartia bilobata (Copepoda, Calanoida). Aquaculture Research, doi: 10.1111/are.12968 (first published online: 24 December 2015).

4.6. Souissi A, Souissi S and Hansen BW, 2015. Physiological improvement in the copepod Eurytemora affinis through thermal and multigenerational selection. Aquaculture Research, in press, doi:10.1111/are.12675.

4.7. Zhang J, Ianora A, Wu C, Pellegrini D, Esposito F and Buttino I, 2014. How to increase productivity of the copepod Acartia tonsa (Dana): effects of population density and food concentration. Aquaculture research DOI 10.1111/are12456

In revision:

4.8. Hansen BW, Buttino I, Cunha ME and Drillet G. A mini review of embryonic cold storage capability from seven strains of Acartia spp. isolated in different geographical areas. Aquaculture.

4.9. Hansen BW, Blanda E, Drillet G, Højgaard JK, Mahjoub SM and Rayner TA. Outdoor rearing facilities of free spawning calanoid copepods can host a bank of resting eggs in the sediment. Accepted with revision by Aquaculture International.

4.10. Zhou C, Vitiello V, Casals E, Puntes VF, Iamunno F, Pellegrini D, Changwen W, Benvenuto G and Buttino I. Toxicity of Nickel on the marine calanoid copepod Acartia tonsa: nickel chloride versus Nanoparticles. Aquatic Toxicology.

Submitted:

4.11. Zhou C, Vitiello V, Pellegrini D and Buttino I. Cold storage of Acartia tonsa embryos for practical use in ecotoxicological studies. Aquatic Toxicology.​ 

-------------------------------------------------------------------------

​III. WP5

Published:

5.1. Lund I, Skov PV and Hansen BW, 2012. Dietary supplementation of essential fatty acids in larval pikeperch (Sandar lucioperca); short and long term effects on stress tolerance and metabolic physiology. Comparative Biochemistry and Physiology - Part A 162:340-348.

Submitted:

5.2. Bruno et al. Swimming activity in first feeding turbot larvae. Submitted to the journal Marine and Freshwater Behaviour and Physiology in Decemer 2015.​

-------------------------------------------------------------------------

​III. WP6

Published:

Abate TG, Nielsen R, Nielsen M, Jepsen P M, Hansen BW and Drillet G, 2015. Economic feasibility of copepod production for commercial use: Resultfrom a prototype production facility. Aquaculture. 436:72-79.

Abate TG, Nielsen M, Nielsen R, Jepsen PM, and Hansen BW, 2015. A Cost-effectiveness analysisof life feeds in juvenile turbot farming: Copepods Vs. Artemia, AquacultureNutrition. In press.

In revision:

Nielsen R, Nielsen M, Abate TG, Hansen BW, Jepsen PM, Søren LN, Buchmann K and Støttrup J. The importance of live-feed traps – farming marine fish species. Aquaculture Economics & Management. In revision.​​

Conference/Workshop contributions

I. WP1​

Presentations at conferences and workshops:

1.1. Blanda E, Jakobsen H, Jepsen PM, Novac A, Pedersen AT and Hansen BW, Pelagic food webs in semi-extensive aquaculture mesocosms: effects of phytoplankton and zooplankton. composition on turbot larvae development. Aquatic Mesocosm Research, 16-19 October 2012 Heraklion - Crete – Greece.

1.2. Blanda E, Jakobsen H, Jepsen PM, Novac A, Pedersen AT and Hansen BW, Pelagic food webs in semi-extensive aquaculture mesocosms: effects of phytoplankton and zooplankton composition on turbot larvae development. Plankton workshop, 10-11 December 2012 Søminestation, Denmark.

1.3. Blanda E, Huang C-C, Hwang J-S, Rayner TA, Su H-M, Wu C-H, Hansen BW. Performance of semi-extensive copepods aquaculture ponds in taiwan: a basic food web study. International Conference on Challenges in Aquatic Sciences, 15-21 March 2013, Taiwan.

1.4. Hansen BW. Effekter af pH på marine copepoder – økologiske og praktiske implikationer.18. danske Havforskermøde, Januar 2015, København.

1.5. Hansen BW and Jepsen PM. Copepods as live feed for marine finfish larval – Future perspective Aquaculture Europe 2015, 20-23 October 2015, Rotterdam, The Netherlands.

1.6. Jepsen PM. Recent advances within intensive recirculated aquaculture system, cultivation of the calanoid copepod Acartia tonsa (Dana). Pecha kuccha at 2nd workshop on Recirculated Aquaculture Systems, 10-11 October 2013, Aalborg, Denmark.

1.7. Jepsen PM. Expression of hsp70 and ferritin in embryos of the copepod Acartia tonsa (Dana) during transition between subitaneous and quiescent state. Dafinet workshop, 2013.

1.8. Jepsen PM. The cultivation requirements for the calanoid copepod Acartia tonsa (Dana) in intensive cultures: Effects of physical density and ammonium on the quality of eggs and offspring.17. Danske Havforsker konferance, 21-23 Januar 2013, Roskilde University, Denmark.

1.9. Jepsen PM, Drillet G, Nielsen M, Nielsen R, Abate TG and Hansen BW. Distrubution and economic feasibility of the calanoid copepod Acartia tonsa.18. Danske Havforsker konferance, Januar 2015, København.

1.10. Jepsen PM. Improvement of copepod eggs resting stages - a story from the other side of the footbridge. A cross-departmental cooperation between ENSPAC & NSM. Friday seminar at Roskilde University institute for nature, systems and models, 2015.

1.11. Vu MTT, Øie G, Reinertsen H. Recirculating aquaculture system for high density production of the calanoid copepod Acartia tonsa (Dana). Pecha kuccha at 2nd workshop on Recirculated Aquaculture Systems, 10-11 October 2013, Aalborg, Denmark.

Posters at conferences and workshops:

1.12. Blanda E, Bruno E, Jakobsen HH, Jepsen PM, Mahjoub MS, Pedersen AT, Pedersen MF and Hansen BW. Improvement of Copepod Productivity for Live Feed in Semi-Intensive Culture. Danske Havforsker konferance, 21-23 Januar 2013, Roskilde University, Denmark.

1.13. Blanda E, Drillet G, Huang C-C, Hwang J-S, Rayner TA, Su H-M, Wu C-H and Hansen BW. Copepod Production in Semi-extensive Aquaculture Ponds in Taiwan. The 9th East China Sea Conference.

1.14. Hansen BW, Drillet G and Jepsen PM. Combat some of the crucial bottenecks for calanoid copepod cultivation as live feed, Larvi 2013 the 6th Fish & shellfish larviculture symposium, 2-5 September 2013, Ghent, Belgium.

1.15. Hansen et al. Copepod egg storages, shipping, and nauplii hatching for use as live feed product in marine hatcheries. Aquaculture Cutting Edge Science in Aquaculture conference, 23-26 August 2015, Le Corum, Montpellier, France.

1.16. Højgaard JK, Hansen B W and Hwang J-S. Identifying the prey field for juvenile fish when fed different size copepods. Aquaculture Cutting Edge Science in Aquaculture conference, 23-26 August 2015, Le Corum, Montpellier, France.

1.17. Jakobsen HH, Blanda EM, Staehr PA, Jepsen PM, Højgård J, Rayner T, Pedersen MF and HansenBW. The role of pH feedback on phytoplankton community development in nutrient amended mesocosmos. IMBER Open Science Conference, 23-27 June 2014, Bergen, Norway.

1.18. Jepsen PM, Drillet G, Nielsen M, Nielsen R, Abate TG and Hansen BW. Distribution and economic feasibility of the production of the calanoid Copepod Acartia tonsa, Aquaculture Cutting Edge Science in Aquaculture conference, 23 - 26 August 2015, Le Corum, Montpellier, France.

1.19. Jepsen PM, Drillet G, Abate TG, Vu MT.T, Nielsen SL, Nielsen M, Nielsen R and Hansen BW. Distribution and economic feasibility of the production of the calanoid Copepod Acartia tonsa (Dana) when produced in a Recirculated Aquaculture System. Aquaculture Europe 2015, 20-23 October 2015, Rotterdam, The Netherlands.

1.20. Nørremark LH og Engell-Sørensen K, Fishlab og Venøsund Fisk og Skaldyr Aps: Production of turbot by use of copepods. Dansk Havforskermøde, 2015, København.

1.21. Rayner TA. Density effect on the ovigerous rate of aquaculture pond copepods in southern Taiwan. The annual ocean science meeting organized by oceanographic society of the Republic of China, 2015, Kaohsiung.

1.22. Rayner TA. Production of Live Fish Larval Feed in Southern Taiwanese Aquaculture Ponds: Why Copepods are Important. Aquaculture Cutting Edge Science in Aquaculture conference, 23 - 26 August 2015, Le Corum, Montpellier, France.

1.23. Vu MTT, Jepsen PM and Hansen BW. Automatic quantification of the calanoid copepod Acartia tonsa (Dana) in intensive live feed cultures using ZooImage software. Aquaculture Conference: To the Next 40 Years of Sustainable Global Aquaculture, 3-6 November 2013, Gran Canaria, Spain.

1.24. Vu MTT, Jepsen PM, Jørgensen NOG, Hansen BW and Nielsen SL. Laboratory scale photobioreactor for high production of microalgae Rhodomonas salina used as food for intensive copepod cultures. Aquaculture Europe 2015, 20-23 October 2015, Rotterdam, The Netherlands.

-----------------------------------------------------------------------

II. WP2​

Presentations at conferences and workshops:

.

2

.2. Selander E. Can we apply chemical ecology expertise for managing infection in aquaculture? EuroMarine Foresight Workshop, UK, 2015.

-----------------------------------------------------------------------

III. WP3


Presentations at conferences and workshops:

3.1. Skovgaard A, Dorosz JNA, Castro-Mejia JL, Hansen LH and Nielsen DS. Bakterier associeret med copepoder - analyseret vha. 2. generations sekvensering. 15. danske Havforskermøde, Januar 2015, København.

3.2. Skovgaard A. Zooplankton epibionts: do they matter? ASLO meeting, February 2013, New Orleans, United

States.

3.3. Skovgaard A. Parasites and diseases in marine copepods: Challenges for future mass-production of live feed for fish larva production. 2011. International Congress on Invertebrate Pathology and Microbial Control, Halifax, Canada.​


----------------------------------------------------------------------------------

​III. WP4

Presentations at conferences and workshops:

4.1. Buttino I. Toxicity of nickel on the marine calanoid copepod Acartia tonsa: nickel chloride versus nickel nanoparticles. 2nd marine nanoecosafety workshop (bimat), 17-18 Novembre 2014 Palermo, Italy.

Poster at conferences and workshops:

4.2. Buttino I, Zhou C, Vitiello V, Pellegrini D, Benvenuto G, Iamunno F, Puntes V, 2015. How nickel affect reproduction of the calanoid copepod Acartia tonsa (Dana): nanoparticles versus nickel chloride exposure-Poster Setac -25th annual meeting- 2015, Barcellona.​ 


------------------------------------------------------------------------

​III. WP6​

Presentations at conferences and workshops:

6.1. Abate TG. Economic feasibility of copepod production for commercial use: result from a prototype production facility. Conference Aquaculture Europe 2014. October 14-17, 2014, San Sebastian, Spain.

6.2. Abate TG. The Impact of Externality and Regulation on Optimal Harvesting Decision in Aquaculture. Workshop on Seafood Markets and Aquaculture Production. August 27-28, 2013, Oslo, Norway.

6.3. Abate TG. The Impact of Externality and Regulation on Optimal Harvesting Decision in Aquaculture. Seminar at University of Stavanger Business school. January 13, Stavanger, Norway.

6.4. Nielsen R. The importance of live-feed traps in farming of marine fish species, The Aquaculture America conference 2015, World Aquaculture Society (WAS) in New Orleans, USA.

6.5. Nielsen R. The importance of live-feed traps – farming marine fish species, The European Association of Fisheries Economists (EAFE) conference April 2015. University of Salerno, Italy. ​


------------------------------------------------------------------------

Thesis

Copepods as live feed - optimisation and use in aquaculture
PhD Thesis by Per Meyer Jepsen